图1 304不锈钢表面硼化物熔覆层截面金相组织
图2为304不锈钢表面硼化物熔覆层XRD谱。可知熔覆层是以 (Cr,Fe)23(C,B)6、(Fe,Cr)2B、(Mo,Fe,Cr)3B2或Mo2FeB2、γ-Fe等物相为主,其中M2B、Mo2FeB2,及少量M23(C,B)6为硼化物相,γ-Fe为黏结相。通过测量确定黏结相显微硬度约为321~350 HV/0.2,得出黏结相为γ-Fe奥氏体。
图2 304不锈钢表面熔覆层XRD谱
2.2 304不锈钢表面硼化物熔覆层的硬度分析
由于等离子熔覆过程中,基体与熔覆层之间存在应力集中,为了降低两者之间的残余应力,故采用不同温度对材料进行去应力退火。图3为不同退火温度下,304不锈钢表面硼化物熔覆层硬度变化曲线,其中A0曲线为熔覆层未经过处理的试样。从硬度曲线变化趋势看,不同温度退火后,熔覆层硬度起伏不大,说明其组织没有发生明显变化。未处理熔覆层的平均显微硬度为630.4 HV0.5,约是304不锈钢 (HV0.5≤200) 的3倍;800 ℃退火后熔覆层的平均显微硬度与未处理熔覆层相比,无明显变化,说明304不锈钢表面硼化物熔覆层具有较好的热稳定性。
图3 不同温度退火熔覆层硬度曲线
2.3 浸泡实验
将304不锈钢表面硼化物熔覆层及304不锈钢分别放入10%HNO3+3%HF酸性溶液中进行浸泡,浸泡过程中试样表面均由平整光亮变得粗糙暗淡,表面均有气体溢出,浸泡溶液变成绿色。说明熔覆层与304不锈钢均发生腐蚀。
图4a和b为304不锈钢在10%HNO3+3%HF酸性溶液中浸泡48 h后的腐蚀形貌。由图4a超景深形貌可知,酸性溶液浸泡48 h后304不锈钢腐蚀深度最大为77 μm。由图4b表面腐蚀形貌知,304不锈钢在混合酸性溶液中腐蚀很严重,存在严重的晶间腐蚀和点蚀。由于304不锈钢晶界处析出富Cr碳化物,晶界中贫Cr区在酸性溶液中不能产生足够钝化膜,导致晶界腐蚀严重。
图4 304不锈钢和熔覆层混合酸中浸泡48 h后腐蚀形貌
图4c和d为304不锈钢表面硼化物熔覆层在10%HNO3+3%HF酸性溶液浸泡48 h后的腐蚀形貌。由图4c可见,酸性溶液浸泡48 h后熔覆层深度最高为9 μm。由图4d腐蚀形貌知,熔覆层在混合酸性溶液中腐蚀主要以点蚀为主,大量微小的腐蚀坑呈树枝晶状均匀分布。因熔覆层中的黏结相也是呈树枝晶状分布,因此熔覆层在混合酸溶液中,是以黏结相γ-Fe腐蚀为主;由于网状、颗粒状硼化物中高浓度Mo、Cr存在,导致产生致密的钝化膜,所以不易被腐蚀。
10%HNO3+3%HF混合酸中浸泡48 h,304不锈钢与硼化物熔覆层均有不同程度的腐蚀,但从腐蚀形貌及腐蚀深度可知,在酸性溶液中熔覆层的耐腐蚀性要好于304不锈钢。说明硼化物熔覆层能够有效保护304不锈钢,并延长其使用寿命。
3 讨论
3.1 304不锈钢表面硼化物熔覆层的表征
图5为熔覆层/304不锈钢基体界面形貌及线扫描图。由线扫描结果可知,从304不锈钢基体一侧到硼化物熔覆层一侧,Mo、Fe含量有明显的变化,而Cr、Ni变化很小,表明熔覆层中的Ni、Cr含量与不锈钢相差无几。从Fe、Mo变化曲线可以得出,结合面存在元素含量梯度的过渡层,证明在等离子熔覆过程中结合面发生原子扩散,因此304不锈钢与熔覆层形成较好的冶金结合。
图5 熔覆层/304不锈钢界面形貌及元素线扫描图
图6为304不锈钢表面硼化物熔覆层组织形貌,可知熔覆层中含有大量网状硼化物,黏结相呈现枝晶状分布,硼化物颗粒弥散分布在黏结相边缘。表1为熔覆层黏结相及硼化物相EDS分析结果 (由于B、C等轻元素偏差较大,故未将其计算在内)。通过分析点1的EDS结果可知,其原子数比Mo∶Fe∶Cr≈2.7∶1∶1,故该颗粒相为Mo2FeB2、M3B2组成的硼化物;分析点2的EDS结果可知黏结相中含Fe、Cr、Ni、Mo,说明黏结相为γ-Fe固溶体,由于Cr、Ni含量较高,说明涂层具有很好的耐腐蚀性能;点3所示的网状物为M2B、M23(C,B)6硼化物,该处含有较高Fe、Cr、Ni,使网状硼化物与黏结相形成共晶组织。
图6 熔覆层组织形貌
表1 图6中各点EDS分析
3.2 304不锈钢表面硼化物熔覆层极化曲线的测定
采用电化学工作站对304不锈钢表面硼化物熔覆层和304不锈钢进行动电位极化测试,它们分别在5%NaCl中性盐溶液及10%HNO3+3%HF酸性溶液中进行,测得极化曲线如图7所示,拟合极化曲线特征值如表2所示。
图7 熔覆层及304不锈钢在不同腐蚀条件下极化曲线
表2 304不锈钢和硼化物熔覆层极化曲线拟合结果
图7a为304不锈钢表面硼化物熔覆层在10% HNO3+3%HF酸性溶液中的极化曲线。可见,304不锈钢极化曲线阳极呈现活化-钝化特征,304不锈钢在电极电位为-0.1 V时腐蚀电流密度迅速下降,开始出现钝化现象;电极电位在电压-0.1~0.1 V区间内,电流密度无规则波动后缓慢上升,这说明304不锈钢在酸性溶液中形成氧化膜的速度很快,但是氧化膜极不稳定,局部易被破坏。熔覆层在电压为0 V左右发生钝化,当电压在0.1 V时电流密度突然上升,表明此时稳态平衡被破坏、氧化膜被击穿,腐蚀继续进行;当电极电位为0.3 V时,随着电位的增加电流密度呈下降趋势,说明在酸性溶液中硼化物熔覆层的耐腐蚀性能优于304不锈钢。
图7b为304不锈钢表面硼化物熔覆层在5% NaCl中性溶液中的极化曲线。从极化阳极曲线可知,在中性溶液中304不锈钢和熔覆层均出现一次钝化,且产生钝化时的电极电位相差较小,说明在中性环境中304不锈钢与熔覆层的耐腐蚀性能相差较小。
由表2可知,304不锈钢表面硼化物熔覆层在酸性条件下的腐蚀电位 (Ecorr=-108.22 mV),略高于304不锈钢在酸性条件下的腐蚀电位 (Ecorr=-144.543 mV),说明熔覆层在酸性条件下的抗腐蚀性要优于304不锈钢;304不锈钢在5%NaCl中性溶液中的腐蚀电位 (Ecorr=-292.339 mV),要略高于熔覆层腐蚀电位 (Ecorr=-370.622 mV),由此说明304不锈钢在中性条件下的耐腐蚀性略优于硼化物熔覆层。
通过对304不锈钢表面硬质熔覆层在10%HNO3+3%HF酸性溶液中电化学阻抗的测定,可知,熔覆层接触酸性溶液后黏结相优先被腐蚀形成小腐蚀孔;硼化物硬质相中较高Mo、Cr形成致密氧化膜,在酸性溶液中很难被腐蚀,随时间的延长,熔覆层表面参与化学反应的物相逐渐减少,熔覆黏结相就会被慢慢破坏掉,形成小的腐蚀坑。一方面熔覆层主要腐蚀黏结相是以点蚀的形式被破坏,另一方面黏结相中固溶的Ni提高黏结相热稳定性,所以黏结相在酸性溶液中腐蚀较为缓慢,因此,熔覆层耐腐蚀性能要优于304不锈钢。
4 结论
(1) 采用等离子熔覆技术在304不锈钢表面制备硼化物熔覆层,熔覆层黏结相为γ-Fe奥氏体,硼化物相为M2B、M23(C,B)6及Mo2FeB2;熔覆层与304不锈钢结合处没有宏观裂纹、孔洞等缺陷,形成冶金结合;熔覆层平均显微硬度630.4 HV0.5,是304不锈钢的3倍左右,能够有效提高304不锈钢表面硬度。
(2) 中性条件下熔覆层耐腐蚀性与304不锈钢相当,酸性条件下熔覆层耐腐蚀性优于304不锈钢;熔覆层在酸性溶液浸泡48 h后,黏结相腐蚀深度仅9 μm,形成点腐蚀;大量网状硼化物中,高浓度Mo、Cr在酸性溶液中生成致密氧化膜,有利于提高熔覆层的抗腐蚀能力。
参考文献
1 Liu X, Yan B H, Liu Y R. Corrosion behavior of 304 stainless steel in dilute sulfuric acid [J]. Sichuan Metall., 2017, 39(5): 57
1 刘欣, 闫秉昊, 刘友荣. 304不锈钢在稀硫酸溶液中的腐蚀行为探讨 [J]. 四川冶金, 2017, 39(5): 57
2 Li W H. Effect of Mo/TiC content on microstructure and properties of Mo2FeB2-TiC multiphase cermets [J]. Heat Treat. Met., 2019, 44(8): 73
2 李文虎. Mo/TiC含量对Mo2FeB2-TiC复相金属陶瓷组织和性能的影响 [J]. 金属热处理, 2019, 44(8): 73
3 Wang X R, Li H, Yan H Y, et al. Progress in application research of metal-base ceramics [J]. Hot Work. Technol., 2019, 48(14): 12
3 王新蕊, 李慧, 严红燕等. 金属基陶瓷的应用研究进展 [J]. 热加工工艺, 2019, 48(14): 12
4 Ma D D. Influencing factors and development trend of Ti(C,N)-based cermets [J]. Ceramics, 2018, (7): 20
4 马调调. Ti(C,N) 基金属陶瓷性能影响因素及发展趋势 [J]. 陶瓷, 2018, (7): 20
5 Turchi C. Cermet material could aid the development of future power plants [J]. Nature, 2018, 562: 346
6 Villars P, Cenzual K, Gladyshevskii R, et al. Mo2FeB2 [J]. Landolt B?rnstein, 2012, 39: 439
7 Ke D, Pan Y, Xu Y, et al. Microstructure and mechanical properties of Mo2FeB2 ceramic-steels with Nb/V addition [J]. Adv. Appl. Ceram., 2017, 116: 92
8 Yamasaki Y, Nishi M, Takagi K I. Development of very high strength Mo2NiB2 complex boride base hard alloy [J]. J. Solid State Chem., 2004, 177: 551
9 Rao Q L, Wang H W, Zhou R H. Structure transformations and property of electroless Ni-B coating [J]. J. Mater. Eng., 2000, (6): 30
9 饶群力, 王浩伟, 周尧和. 高硬度镍硼合金涂层的组织转变和性能 [J]. 材料工程, 2000, (6): 30
10 Ke D Q, Pan Y J, Xu Y Y, et al. VC and Cr3C2 doped WCoB-TiC ceramic composites prepared by hot-pressing [J]. Int. J. Refract. Met. Hard Mater., 2017, 68: 24
11 Ke D Q, Pan Y J, Lu X F, et al. Influence and effectivity of Sm2O3 and Cr3C2 grain growth inhibitors on sintering of WCoB-TiC based cermets [J]. Ceram. Int., 2015, 41: 15235
12 Ke D Q, Pan Y J, Tong X Y. Study on the microstructure and properties of Ni60 coating by plasma spray welding on copper [J]. Surf. Technol., 2013, 42(4): 91
12 柯德庆, 潘应君, 童向阳. 纯铜表面等离子喷焊Ni60涂层组织及性能的研究 [J]. 表面技术, 2013, 42(4): 91
13 Natarajan S. Thermochemical surface engineering of steels [J]. Surf. Eng., 2015, 31: 875
14 Quan C, Wang P, Deng S J, et al. Cathode plasma electrolytic deposition with large area [J]. Met. World, 2015, (1): 78
14 权成, 王鹏, 邓舜杰等. 阴极等离子电解大面积沉积涂层技术 [J]. 金属世界, 2015, (1): 78
15 Chan C W, Carson L, Smith G C, et al. Enhancing the antibacterial performance of orthopaedic implant materials by fibre laser surface engineering [J]. Appl. Surf. Sci., 2017, 404: 67
16 Manzhirov A V. Advances in the theory of surface growth with applications to additive manufacturing technologies [J]. Proced. Eng., 2017, 173: 11