[1] Dong S J, Wang N. Research on high temperature urea cyclic corrosion resistance of stainless steel for SCR post processor [J]. Automob. Technol. Mater., 2017, (5): 41
[2] Xu Z H, Zhang G L, Li M C, et al. Corrosion behavior of stainless steels in simulated automotive SCR environment [A]. Proceedings of the 10th China Iron & Steel Annual Meeting and the 6th Baosteel Academic Annual Meeting III [C]. Shanghai: China Metal Society, 2015: 975
[5] Nocker J, Nyborg L, Norell M. Corrosion of stainless steels in simulated diesel exhaust environment with urea [J]. Mater. Corros., 2011, 63: 388
[6] Miraval C, Saedlou S, Evrard R, et al. Influence of Selective Catalytic Reduction (SCR) system on stainless steel durability [J]. Meta. And Mater., 2013, 66: 153
[7] Wang S D, Han P H, Ma R Y, et al. Effect of urea on condensates corrosion of stainless steels in simulated automotive exhaust environments [J]. Chin J. Soc. Corros. Prot., 2013, 33: 41
[8] Zhang Y F, Shores D A. Cracking and spoiling of oxide scale from 304 stainless steel at high temperatures [J]. J. Electrochem. Soc., 1994, 141: 1255
[9] Teng Y F. High temperature fatigue behavior of 429 and 429 Mo ferritic stainless steels [D]. Shenyang: Shenyang University of Technology, 2016
[10] Yun D W, Seo H S, Jun J H, et al. Molybdenum effect on oxidation resistance and electric conduction of ferritic stainless steel for SOFC interconnect [J]. Int. J. Hydrogen Energ., 2012, 37: 10328
[11] Jiang Y, Kim S, Lee J. Effect of different Mo contents on tensile and corrosion behaviors of CD4MCU cast duplex stainless steels [J]. Metall. Mater. Trans., 2005, 36A: 1229
[12] Li M X, Zhang W, Wang X L, et al. Effect of Nb on the performance of 409 stainless steel for automotive exhaust systems [J]. Steel. Res. Int., 2018, 89: 1700558
[13] Fujita N, Ohmura K, Kikuchi M, et al. Effect of Nb on high-temperature properties for ferritic stainless steel [J]. Scr. Mater., 1996, 35: 705
[14] Shu J. Investigation on corrosion resistance properties and formabilities of ferritic stainless steel used as aumotive exhaust system [D]. Shanghai: Shanghai Jiao Tong University, 2013
[15] Li Z. Research on intergranular corrosion resistance of low chromium ferritic stainless steel [D]. Shanghai: Fudan University, 2013
[15] (李钊. 低铬铁素体不锈钢耐晶间腐蚀性能研究 [D]. 上海: 复旦大学, 2013)
[16] Zhang H, Zhang G L, Liu X, et al. Condensate corrosion behavior of stainless steels for automotive mufflers [J]. Chin J. Soc. Corros. Prot., 2016, 36: 20
[17] Zhang C Q, Lv G M, Ouyang M H, et al. Research progress of nitride precipitation and its effects on corrosion resistance of high-nitrogen austenitic stainless steel [J]. Hot Work. Technol., 2018, 47(2): 33
[18] Guo Y Y. Study on the technology of plasma nitriding and plasma nitrocarburising of austenitic stainless steel in the low lem perature [D]. Shenyang: Northeastern University, 2008
[19] Nockert J, Norell M. Corrosion at the urea injection in SCR-system during component test [J]. Mater. Corros., 2013, 64: 34
[20] Saedlou S, Santacreu P, Leseux J. Suitable stainless steel selection for exhaust line containing a selective catalytic reduction (SCR) system [J]. SAE Int., 2011-01-1323
[21] Xiao J M. The Metallization of Stainless Steel. 2nd ed. [M]. Beijing: Metallurgical Industry Press, 2006
[21] (肖纪美. 不锈钢的金属学问题. 第2版 [M]. 北京: 冶金工业出版社, 2006)
[22] Wan Z. Study on intergranular corrosion of ferrite stainless steel [J]. Corros. Prot. Petrochem. Ind., 2015, 32(4): 62
[23] Zhang H W. Research on Corrosion Resistance of Stainless Steel for Automotive Exhaust System [D]. Beijing: University of Science and Technology Beijing, 2013
[24] Chen C, Shang C J, Song X, et al. Condensate corrosion behavior of new style ferritic stainless steels used in automotive exhaust system [J]. Iron Steel, 2009, 44(10): 78
[25] Salgado M F D, Rodrigues S C S, Santos D M, et al. Cyclic oxidation resistance of ferritic stainless steels used in mufflers of automobiles [J]. Eng. Fail. Anal, 2017, 79: 89