图1 铜铝复合板结构图
中性盐雾腐蚀实验按照GB 6458-86在DG-170211盐雾腐蚀机上进行。用棉绳将试样悬挂在盐雾腐蚀箱工作室内,实验温度为35 ℃,选取不同时间进行浓度为5% (质量分数) NaCl溶液的连续盐雾实验,选取盐雾腐蚀时间分别为24,144和240 h。盐雾实验后,刮下表面腐蚀产物及表面附着的沉积盐,酒精清洗吹干后,干燥48 h再进行称重,最后进行相关计算和检测。在VSP300电化学工作站进行电化学实验,饱和甘汞为参比电极,铂丝为对电极,工作电极即铜铝复合板使用热熔胶将除了被测面以外均涂封好,被测面为铜铝的结合界面,极化曲线扫描范围是-1~1 V,扫描速度为10 mV/s,电化学阻抗频率范围为105~10-2 Hz,等效电路图通过ZSIMPWIN软件分析拟合,采用S-3400扫描电镜 (SEM) 对铜铝复合板表面及腐蚀产物进行微观形貌及132-1D EDX能谱 (EDS) 分析成分,使用XRD-7000型X射线衍射仪 (XRD) 检测腐蚀产物成分,扫描角度为10°~90°,扫描速度为8°/min。腐蚀失重采用公式
计算得到,其中W1为腐蚀后重量,g,W0为腐蚀前重量,g,S为试样暴露在盐雾环境下的面积,m2。
2 结果与分析
2.1 电化学检测
为了研究阴阳极面积比 (被测面上阴极铜面积与阳极铝面积的比值) 对铜铝复合板腐蚀性能的影响,将阴阳极面积比分别为0.16和0.18的铜铝复合板浸泡在NaCl溶液中进行电化学检测,得到极化曲线图和电化学阻抗谱。图2为测得的极化曲线图,通过Tafel外推法计算得出的自腐蚀电流密度和自腐蚀电位如表1所示。自腐蚀电流密度可以反映材料的耐腐蚀性能,自腐蚀电流密度越大,说明材料的腐蚀速率越快,耐腐蚀性能越差。从表1中可以看出,阴阳极面积比为0.16的铜铝复合板的腐蚀电流密度为19.2 μA·cm-2,阴阳极面积比为0.18的铜铝复合板的腐蚀电流密度为36.8 μA·cm-2,而纯铝的腐蚀电流密度为1.852 μA·cm-2,铜铝复合板构成的电偶对降低了铝的耐蚀性能,随着阴阳极面积比的增大,自腐蚀电流密度增大,说明铜铝阴阳极面积比越大,耐腐蚀性能变差。
图2 不同阴阳极面积比的铜铝复合板极化曲线
表1 极化曲线拟合数据
图3为不同阴阳极面积比的铜铝复合板测得的电化学阻抗谱,Nyquist图均由一个容抗弧组成,bode图中的相位角图显示铜铝复合板为一个时间常数,而纯铝为两个时间常数,将电化学阻抗谱用ZSIMPWIN软件拟合成如图4a和b所示的等效电路图,拟合数据如表2所示,其中Rs为溶液电阻,电容用常相角元件代替,CPEdl代表工作电极表面的双电层电容,Rb代表腐蚀产物层电阻,Rct代表工作电极表面反应的电荷转移电阻,电荷转移电阻越小,说明材料的耐腐蚀性能越差。从表2中拟合的数据可以看出,阴阳极面积比为0.16的铜铝复合板的Rct为1421 Ω·cm2,阴阳极面积比为0.18的铜铝复合板Rct为219 Ω·cm2,说明随着阴阳极面积比的增大,工作电极表面的电荷转移电阻减小,材料的耐腐蚀性能降低,纯铝电荷转移电阻最大,该结果与极化曲线的结果相吻合。从bode图中的阻抗曲线可以看出,纯铝的阻抗值最大,且增大阴阳极面积比时阻抗值降低,也表明铜铝复合板的耐腐蚀性能降低。
图3 不同阴阳极面积比的铜铝复合板电化学阻抗谱
图4 电化学阻抗等效电路图
表2 电化学阻抗等效电路拟合数据
图5为经过不同时间盐雾腐蚀后的铜铝复合板极化曲线,相应的拟合数据如表3所示,从表中可以看出,随着腐蚀时间的延长,腐蚀电流密度呈现先增加后降低最后增加的趋势,这是因为在腐蚀开始之前,材料表面会覆盖一层钝化膜,保护基体免受腐蚀溶液的侵蚀,此时材料的耐腐蚀性能较好。当腐蚀发展到24 h时,材料表面的氧化膜被腐蚀破坏,裸露出来的基体与腐蚀液接触面积增大,使得材料的耐腐蚀性能变差。随着腐蚀进行到144 h的时候,材料表面生成新的腐蚀产物覆盖在基体表面,阻碍腐蚀溶液对基体的进一步侵蚀,材料的耐腐蚀性能提高。当腐蚀到达240 h时,由于后生成的腐蚀产物疏松多孔容易脱落,使得基体与溶液再一次接触,试样的耐腐蚀性能再次降低。
图5 盐雾腐蚀不同时间后的铜铝复合板极化曲线
表3 极化曲线拟合数据
图6为经过不同盐雾腐蚀时间后的铜铝复合板电化学阻抗谱,从图6a中可以看出,阻抗谱均由一个容抗弧组成,且容抗弧半径随着腐蚀时间的延长,呈现先减小再增加最后减小的趋势,说明材料的耐腐蚀性能随着盐雾腐蚀时间的增加呈现先提高后降低再提高的趋势。图6b图中相位角图显示为一个时间常数。通过ZSIMPWIN软件拟合出的等效电路图 (图4) 数据如表4所示。从表4中可以看出,没经过盐雾腐蚀的铜铝复合板Rct为1.0×104 Ω·cm2,盐雾腐蚀24 h后Rct降低到1.9×103 Ω·cm2,到144 h时Rct升高到7.6×103 Ω·cm2,当腐蚀发展到240 h时,Rct再次降低到3.0×103 Ω·cm2。由此可以看出,随着腐蚀时间的延长,电荷转移电阻均呈现先减小再增加最后减小的趋势,波特图中的阻抗值也是呈现先减小再增加最后减小的趋势,该结果与极化曲线的结果相吻合。
图6 盐雾腐蚀不同时间后的铜铝复合板电化学阻抗谱
表4 电化学阻抗等效电路拟合数据
2.2 腐蚀微观形貌及腐蚀产物成分分析
经过不同时间盐雾腐蚀后的铜铝界面腐蚀微观形貌如图7所示,从图中可以看出,腐蚀集中在Al一侧,Cu一侧几乎无变化,且在界面处的腐蚀最为严重。腐蚀24 h时 (图7b),在铝一侧出现宽度均匀、接近500 μm的狭长腐蚀坑,腐蚀坑处被腐蚀的基体呈现蜂窝状,在铝一侧沿着铜铝界面处分布着较为致密的白色块状腐蚀产物;腐蚀144 h时腐蚀坑面积变大,从图中可以看到腐蚀坑内开始生成新的龟裂状腐蚀产物;腐蚀到达240 h时,铝基体剥蚀现象显著,腐蚀产物脱落现象明显,裸露出的铝基体面积更大。图8为腐蚀产物的成分分析,其中图8a是腐蚀产物XRD检测结果,结果显示腐蚀产物的成分为Al2O3,AlO(OH) 和Al(OH)3。从图8b的能谱分析上可以看出,腐蚀坑内腐蚀产物的元素除了有Al和O之外,还有一定含量的Cl,说明Cl-是致使铜铝复合板发生腐蚀的主要因素。
图7 不同盐雾腐蚀时间铜铝复合板界面形貌图
图8 腐蚀产物的XRD谱及EDS分析
2.3 腐蚀动力学
图9为铜铝复合板在5%NaCl盐雾环境下进行不同时间连续腐蚀的动力学曲线,通过origin软件拟合得到的曲线方程如图中所示,其中R2=0.9962,说明拟合效果良好。拟合的方程呈现幂指数形式:W=abn,其中n的大小代表腐蚀产物对腐蚀的影响,当n<1时,说明腐蚀产物对腐蚀过程具有抑制作用;当n>1时,说明腐蚀产物对腐蚀过程具有促进作用。铜铝复合板盐雾腐蚀得到的腐蚀动力学方程中n值为1.55359,大于1,说明腐蚀产物对铜铝复合板的腐蚀具有促进作用。
图9 盐雾环境下的腐蚀动力学曲线
2.4 铜铝复合板盐雾腐蚀机理
图10是铜铝复合板盐雾腐蚀示意图,当Cu和Al复合在一起时,两种金属的电位差构成电偶对,Cu的电位高于Al的电位,所以腐蚀的过程中铝为阳极,Cu为阴极,因此Al的腐蚀较为严重,而Cu侧几乎不腐蚀,这是对阴极Cu的一种保护作用。腐蚀过程中涉及的电化学反应方程式有:
图10 铜铝复合板盐雾腐蚀示意图
在腐蚀刚开始阶段,由于金属表面覆盖一层致密的钝化膜,保护基体免受腐蚀性溶液的侵蚀,腐蚀速率较慢;随着腐蚀时间逐渐延长,由于侵蚀性离子Cl-的存在,使得钝化膜破坏,基体与溶液相接触,腐蚀速率加快,铝基体上出现点蚀坑并产生新的腐蚀产物,且靠近铜铝界面处的Al腐蚀较为严重;腐蚀逐步进行的过程中,铝基体上小的点蚀坑逐渐扩展,铜铝界面附近多个蚀坑连通形成更大更深的腐蚀坑,腐蚀产物增多,除了块状之外还有龟裂状的腐蚀产物,阻碍基体与Cl-的接触,腐蚀速率变慢,此时涉及的反应方程式有:
其中AlOOH对基体具有很强的保护作用;腐蚀后期由于后来逐渐形成疏松多孔易于脱落的腐蚀产物,与Cl-反应溶解,使得基体再次裸露在外面,与溶液接触面积增大,腐蚀速率提高,此时涉及的反应方程式有:
因此腐蚀过程是一个循环往复的过程,直到铝基体被逐渐剥蚀掉。
3 结论
(1) 铜铝复合板在腐蚀过程中构成电偶对加速了Al的腐蚀,铜铝复合板经过盐雾腐蚀后,腐蚀主要发生在Al一侧,Cu侧几乎无变化;且随着铜铝阴阳极面积比的增大,材料的耐腐蚀性能变差。
(2) 由于铜铝复合板的腐蚀是一个循环往复的过程,包括基体的溶解、腐蚀产物的形成与脱落过程;随着盐雾腐蚀时间逐渐延长,电化学检测结果表明铜铝复合板的耐腐蚀性能呈现先提高后降低再提高的趋势。
(3) 铜铝复合板失重曲线符合幂指数方程W=1.948×10-5t3.17156,腐蚀产物对腐蚀过程具有促进作用。腐蚀产物成分为Al2O3、AlO(OH) 和Al(OH)3,Cl-使得材料发生点蚀,在靠近界面处,铝基体发生腐蚀最为严重;随后腐蚀坑进一步向横向和纵向扩展,腐蚀产物逐渐增多,再与Cl-反应而脱落反复循环进行。