图1 L245钢在不同温度油气田模拟采出水中浸泡10 d后的腐蚀速率

 

2.2 电化学测试

 

2.2.1 动电位极化曲线测试结果 图2为L245钢在不同温度下的动电位极化曲线,表1是各极化曲线的电化学参数拟合结果。从图2中可以看出,当温度升高时,L245钢的自腐蚀电位正移,整体处于活化溶解状态。从表2可以看出,随着温度升高L245钢的腐蚀电流逐步增大,腐蚀速率不断加快。当温度升高至90 ℃时自腐蚀电流升高到177 μAcm-2,远远大于其余两个温度条件下的自腐蚀电流,说明L245钢在高温下反应比较剧烈。同时通过表2可以看出,随着温度的升高ba的变化不大,而bc的变化较大,说明温度升高对阳极反应影响较小,而对阴极反应影响较大,从而可知腐蚀反应过程主要由阴极控制。

 

2.2.2 电化学阻抗测量结果 图3为L245钢在不同温度下的Nyquist图和Bode图。可以看出随着温度的升高,L245钢的容抗弧不断减小,从Bode图中可以看出,温度升高相位角峰向高频移动,说明L245钢的抗腐蚀性随着温度升高逐渐减弱,说明温度的升高减小了腐蚀反应的阻力,导致腐蚀速率增加,这一结果与极化曲线的结果一致。

 

对以上电化学阻抗结果进行等效电路拟合 (图4),拟合结果如表2所示。其中,Rs为溶液电阻,Cd为电化学反应电容,Rt为电荷转移电阻,Q为腐蚀产物膜电容,Rf为电极表面腐蚀产物膜电阻。从表2可以看出,随着温度的升高,Rt减小,腐蚀速率增加。

 防腐保温,桥梁防腐,线塔防腐,铁塔防腐,高空防腐,钢结构防腐,钢结构防火,管道防腐,管道保温,储罐防腐,储罐清洗,3pe防腐钢管,防腐公司

图2 L245钢在不同温度油气田模拟水中的动电位极化曲线

 防腐保温,桥梁防腐,线塔防腐,铁塔防腐,高空防腐,钢结构防腐,钢结构防火,管道防腐,管道保温,储罐防腐,储罐清洗,3pe防腐钢管,防腐公司

图3 L245钢在不同温度的油气田模拟水中的Nyquist图和Bode图

防腐保温,桥梁防腐,线塔防腐,铁塔防腐,高空防腐,钢结构防腐,钢结构防火,管道防腐,管道保温,储罐防腐,储罐清洗,3pe防腐钢管,防腐公司

图4 L245钢在不同温度的油气田模拟水中电化学阻抗等效拟合电路


表1 L245钢在不同温度的油气田采出水中极化曲线拟合结果

防腐保温,桥梁防腐,线塔防腐,铁塔防腐,高空防腐,钢结构防腐,钢结构防火,管道防腐,管道保温,储罐防腐,储罐清洗,3pe防腐钢管,防腐公司

表2 L245钢在模拟油田采出水中不同温度下电化学阻抗拟合所得电化学参数

防腐保温,桥梁防腐,线塔防腐,铁塔防腐,高空防腐,钢结构防腐,钢结构防火,管道防腐,管道保温,储罐防腐,储罐清洗,3pe防腐钢管,防腐公司

2.3 腐蚀表面形貌结果

 

图5是L245钢在不同温度下的油气田模拟水中浸泡10 d后表面的SEM像。可以看出,在3个温度条件下分别发生了均匀腐蚀和局部腐蚀。30 ℃时均匀腐蚀的膜层产物较少,腐蚀类型为均匀腐蚀。当温度升高到60 ℃时,腐蚀形貌发生显著变化,L245钢表面发生局部腐蚀。温度升高至90 ℃时,腐蚀产物增多,局部腐蚀数量增加。

防腐保温,桥梁防腐,线塔防腐,铁塔防腐,高空防腐,钢结构防腐,钢结构防火,管道防腐,管道保温,储罐防腐,储罐清洗,3pe防腐钢管,防腐公司 

图5 L245钢在不同温度的模拟油田采出水中浸泡10 d后的腐蚀形貌

 

2.4 分析与讨论

 

在油气田采出水的腐蚀过程中,腐蚀反应[14]如下:

防腐保温,桥梁防腐,线塔防腐,铁塔防腐,高空防腐,钢结构防腐,钢结构防火,管道防腐,管道保温,储罐防腐,储罐清洗,3pe防腐钢管,防腐公司 

温度主要是影响材料表面腐蚀产物膜的化学组成和厚度[15],进而影响腐蚀速率。在饱和CO2环境下,腐蚀反应主要由阴极反应来控制整个反应速度[16],通过动电位极化曲线发现温度升高加快了阴极反应速度,使整个腐蚀反应越来越剧烈。在腐蚀开始阶段,Fe不断发生阳极溶解,反应表面附近Fe2+浓度较高,反应表面会生成一层疏松的腐蚀产物膜,在常温下Cl-的存在降低了CO2的溶解度[17]使碳钢的腐蚀速率降低,温度升高使腐蚀速率增加生成疏松的FeCO3,随着反应时间推移腐蚀产物膜逐渐累积,当局部腐蚀产物膜累积到一定程度后产生内应力使腐蚀产物开裂,从而使半径较小的Cl-通过裂缝进入内部发生局部腐蚀。

 

3 结论

(1) 温度对L245钢的CO2腐蚀有显著影响,在低温阶段 (≤90 ℃),腐蚀速率随着温度的升高而加快。

 

(2) 常温下 (30 ℃) L245钢的CO2腐蚀主要为均匀腐蚀,当温度升高至60 ℃开始发生局部腐蚀,局部腐蚀反应随着温度升高而加剧。